To get more Latest Updates just visit: onlinebits.jntufastupdates.com

2nd year 2nd sem 1st mid R10

STLD

1. The difference bit output of a half-subtractor is the same as :->difference bit output of a full-subtractor Which of the following is known as half-adder?:->XOR gate 3. How many inputs and outputs does a full subtractor circuit have?:->three inputs, two outputs 4. How many inputs and outputs does a full adder have?:->three inputs, two outputs 5. A combinational circuit:->never contains memory elements 6. In a combinational circuit the outputs at any instant of time depend:->only on the inputs present at that WWW. Exam Sadda. com instant of time 7. The half-adder carry equation is:->A.B' The half-adder sum is given by:->XOR gate 9. The half adder has how many inputs and outputs?:->2,2 10. The combinational circuits depends on:->Present inputs only 11. The full adder can perform:->3 bit addition with carry 12. The number of full adders in a 4-bit parallel adder is:->4 13. Which type of adder is this? >4-bit ripple carry adder 14. The carry generated in binary subtraction with 1's or 2's complement method is called :-> End around-carry method 15. The number of full-adders in 4-bit parallel adder is:->4 16. EX-3 adder requires how many number of full adders :->2 17. The carry look-ahead adder calculates one or more carry bits, which reduces the wait time to calculate the result of the larger value bits: -> before the sum 18. Which adder each full adder inputs a Cin, which is the Cout of the previous adder? :->ripple carry adder 19. BCD subtractor requires how many parallel adders?:->4 20. A full subtractor can be realized by :->two half subtractors, one OR gate 21. BCD adder requires how many number of full adders?:->2 22. A full adder can be realized by:->two-half-adder, one OR gates 23. EX-3 subtractor can be implemented by using how many numbers of parallel adders:->2 24. The carry expression for a full adder is:->xy+yz+xz 25. A full subtractor can be realized by :->two- half subtractors, one OR gate 26. BCD adder requires how many number of full adders. :->2 27. The number of full adders required to add two 4-bit data in a Serial adder :->1 28 A full adder can be realized by :->two- half -adder, one OR gates 29. The number of NAND gates is required to realize a half-subtractor:->5 30. Identify the borrow expression for full-subtractor circuit:->X'(Y+Z)+YZ 31. The minimum number of NAND gates are required to realize the OR gate are WNW. transadda.com :-> A'B'+AB 32. A®B = 33. The output expression for NOR gate is _ 34. The given maxterm is A+B+C is equivalent binary number is 35. The minimum number of NAND gates is required to implement the function F= (x '+y')(z+w):->4 36. The simplified expression for A(A+B) is 37. How many number of outputs are available for logic gate? :->1 38. An XOR gate with 6 terms contains _____ number of minterms :->32

To get more Latest Updates just visit: onlinebits.jntufastupdates.com

그렇게 하는데 그렇게 되었다. 그 아이들은 그 아름이를 하려면서 하는데 하는데 하는데 하는데 사람들이 아니는데 하는데 하는데 그는데 그렇게 되었다. 그 그 그 그 그 그 그 그 그 그 그 그 없다.
39. The operation which is commutative but not associative is:->NAND
40. In Cyclic Redundancy Check if the number of information bits are 'n', then the length of the divisor is
:->n+1
41. Vertical redundancy check is also called as:->Parity check
42. Error correcting code can perform the operation is:->Both
43. Convert the 11001010 binary number into gray code:->10101111
44. Boolean algebra does not have operations :->All of the above
45. The positions of redundancy bits in Hamming code is :->powers of 2
46. AB+A'BC+BC is an example for :->SOP 47. (x')'=:->x Low Fxansada, com
48. Simplify the expression A+AB+ABC+ABCD+ABCDE:->A
49. An example of canonical SOP is :->AB'C+A'BC
50. The duel of the given function can be obtained byBoth a & b
51. X.1=1.X =X is Law :->Union
52. NOT gate consists no. of inputs :->1
53. If an input A is given to an inverter, the output will be :->A
54. Convert the 101101 gray code number into binary:->110110
55. A NAND gate with inverted inputs performs the logical function :->OR
56. A.B = B.A is Law:->Commutative
57. In two valued Boolean algebra, if x=1, then x.x=:->
58. For the inputs a and b, the output expression for AND gate is a.b
59. In a K-map, each given minterm is represented by:->1
60. ASCII code is bit code :->7
61. Which of the following is universal gate? : NAND
62. Cyclic Redundancy Check istype of code :->Error detecting
63. EBCDIC stands for :->Extended Binary Coded Decimal Interchange
64. The number of cells in a 4-variable K-map is :->16
65. In the Hamming code for each group of m information digits, K parity checking digits are added with
condition:->2 ^K >n+K+1
66 Gray code is :->Non weighted code
67. The equivalent gray number for the binary number is:->1101
68. The don't care in K-map covered in a looping, then its value is treated as:->1
69. The function and its duel are same then the function is called as:->Self-duel
70. (a.b)' =a'+b' is theorem :->de Morgan' s
70. $(a.b) - a + b + s$ 71. $(x+y)' = :-> X'.y'$
72. The MSB of a signed binary number indicates its:->sign
73. Gray code is: >non-weighted
74. The process of subtraction gets converted into that of addition by using :->2's complement method
75. The minimum distance of is required for a code to be error correcting code:->3
76. 2' complement of a 2' s complement is :->same number itself
77. The number of hits required to represent 25 in BCD is:->8
78. In the Hamming code for each group of 'M' in formation digits, K parity checking digits are added with a
condition: $->2$ $k \ge M + K + 1$
79. Cyclic codes are useful in::->continuously varying digital signals representation
80. Which of the following Boolean algebra rules is correct?:->($A + B$) ($A + C$) = $AC + B$ C
81. The Boolean expression (XYZ + YZ - XZ) after simplification:->Y
82. The minimum distance required for a code to be a error detecting code is :->2
83. The parity of 01110010 is:->even
84. The NAND can function as NOT gate if:->inputs are connected together
85. Which of the following gates is known as coincidence detector? :->AND gate
86. AB + A + 1=:->1
87. (a+b)' =a'b' and (ab)' =a'+b'. This theorem is called :->Demorgan's theorem
88. Which of the following code is used in K - map for representing the min terms? :->Gray code
89. The given max term is A+B+C, its equivalent Binary representation is :->000

To get more Latest Updates just visit: onlinebits.jntufastupdates.com

```
90. a+b=1, ab=0, then:->a=b' and b=a'
91. a+b = a+c and ab=ac, then :->b=c
92. aa'=:->0
93. a+a':->1
                     LWN-Bransadda-Com
94. If a' = b; then (a')' = :-> b'
95. a+a=:->a
96. The given max term is A+B+C, its equivalent Binary representation is :->101
97. Which of the following code issued in K - map for representing them in terms? :->Gray code
98. In which of the following gates, the output is 0 If and only if at least one input is 1? :->NOR
99. Identify the universal gate from the following gates :->NAND
           a+1=:->1
100.
101.
           a.0 = :-> 0
           Express (1111 1011) 2421 code into decimal form :->954
102.
           Express 970 into excess-3 code :->1100 1010 0011
103.
           Convert 0110 1011 1100 0111 excess-3 code into decimal :->3894
104.
           Convert gray code1110011 into binary :->1011101
105.
           Convert 1011101.1011 into hexadecimal:->5D.B
106.
           Convert (FFF) 16 into decimal equivalent :->4095
107.
           Convert (2BD) 16 into octal equivalent :->1275
108.
           Subtract 438 from 473 using 10's complement method:->459
109.
           Encode the 7-bit even parity hamming code 1110000 into binary code :->1000
110.
           Perform 111111/1001:->111
111.
           1's complement of 111001101:->000110010
112.
           Convert 434.45 into floating point decimal notation .>43445X10<sup>-2</sup>
113.
           Multiply 1011 and 111:->1001 101
114.
           Convert 0.00379 into floating point decimal notation :->379X10<sup>-5</sup>
 115.
           Perform 10110.1101/11/1:->111.00011
 116.
           Subtract 15 from 39using 9's complement method:->7
```

117.